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Abstract
We analyse the energy magneto-polaron spectrum of the polar uniaxial layer
compound InSe in a magnetic field directed along the optical axis. A quasi-
bidimensional behaviour of the electron gas in this particular structure was
considered. In the framework of the Wigner–Brillouin perturbational theory
we systematically take into account all the sources of anisotropy. We found that
the implied anisotropy brings distinctive contributions to the complex energy
magneto-polaron spectrum of polar uniaxial crystals. The theory is used to
examine the experimental results obtained from cyclotron resonance frequency
measurements in InSe at low temperature.

1. Introduction

Based on measurements of cyclotron resonance and Shubnikov–de Hass oscillations at low
temperatures, Portal and co-workers [1] proved an apparently two-dimensional (2D) behaviour
of the electron gas in bulk InSe. Consequently, it was considered [2] that in n-type material,
during the growth of the crystal, the shallow donor impurities are accumulated at the defect
planes leading to the formation of several sheets with a low individual estimated electron density
(of order 1 × 1011 cm−2). Subsequent cyclotron studies [3, 4] have confirmed the proposed
electron gas model. An improvement [5] of this model was done by considering a quasi-two-
dimensional (Q2D) behaviour of the electron gas. Thus, in the absence of knowledge of the
confining potential along the optical axis, the finite extent of the electron wavefunction in the
symmetric plane layer is taken into account by considering [5] a wavefunction |ϕ(z)|2 ∼ e−|z|/a ,
a being a fitting parameter.

In uniaxial polar crystals, the optical-phonon-modefrequencies, ωµ(θ) (µ and θ being the
branch index and the angle between the phonon wavevector and the optical axis, respectively),
depend on the propagation direction [6]. For the particular case of InSe it was found [7]
that the extraordinary phonon modes can be classified as quasi-transverse-modes having
the frequencies ω1(θ) in the domain [ω⊥

TO, ω
‖
TO] and quasi-longitudinal modes with the

frequencies ω2(θ) in [ω‖
LO, ω⊥

LO]. The frequencies ω
‖,(⊥)

TO and ω
‖,(⊥)

LO are the frequencies of
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the transverse/longitudinal phonon modes along the principal directions, and they verify the
inequalities ω⊥

LO > ω
‖
LO > ω

‖
TO > ω⊥

TO. The symbols ⊥ and ‖ correspond to a direction that
is either orthogonal or parallel to the optical axis.

A general method to obtain an equivalent form of the Fröhlich Hamiltonian extended to
the anisotropic crystals having complex basis (with the uniaxial case written explicitly) was
developed in [8]. The same electron–optical-phonon interaction Hamiltonian was used [9]
to discuss the electron–optical-phonon scattering in wurtzite crystals, particularly for GaN.
Solving the problem of the optical polaron in uniaxial crystals [8], the forms of the self-energy
and the effective-mass tensor are found to depend on the quantities αµ(θ) which are extensions
to the uniaxial case of the dimensionless Fröhlich coupling constant α.

Because of their important effects on the magneto-polaron spectrum and, consequently,
on the cyclotron resonance phenomenon in a polar uniaxial crystal, the anisotropic properties
of the system have to be properly taken into account. Contributions of all the sources of the
system’s anisotropy (the shape of constant-energy surfaces of the bare electron, the electron–
optical-phonon interaction and the frequency spectrum of the extraordinary phonon modes) to
the energy levels of a 3D magneto-polaron (belonging to the lower magneto-polaron branch)
have been considered in [10] in the context of the ‘improved Wigner–Brillouin perturbational
theory’ [11] (IWBPT). For InSe it was shown [10] that the polaron coupling function α1(θ)

for the quasi-transverse phonon modes is small compared to that for the quasi-longitudinal
modes. However, the presence of the continuum frequency distribution of the quasi-transverse
modes in a domain bellow that of the quasi-longitudinal modes plays an important role in
the cyclotron resonance (implying the magneto-polaron levels of the lower branch) at high
magnetic fields.

The model in [5], which uses the so-called ‘memory-function method’ [12] to derive
the appropriate component of the magneto-conductivity tensor, had successfully explained
the results of the cyclotron resonance measurements performed at low temperatures in InSe,
but the anisotropic properties of the system were taken into account in a simplified manner.
Thus, instead of the entire spectrum of the extraordinary phonon modes, discussed above,
only a phonon frequency, ωLO, was considered [5], as in the isotropic case. Moreover, the
two anisotropic polaron couplings α⊥ and α‖ for the perpendicular and parallel motions to the
optical axis were introduced instead of the right polaron coupling ‘functions’ αµ(θ) [8, 10, 13].

We shall discuss here the effects of the anisotropic properties of the system and the finite
z-extent of the electron wavefunction on the cyclotron resonance at low temperature in a polar
uniaxial semiconductor placed in a dc magnetic field directed along the optical axis. In order to
observe the direct influence of the peculiar anisotropic properties of the phonon spectrum on the
cyclotron resonance we chose to get the entire magneto-polaron spectrum instead of using the
memory-function approach. By considering in the proper way all the involved anisotropies we
reveal new splittings in the magneto-polaron spectrum of a system having a complex phonon
spectrum.

2. Hamiltonian and perturbational calculation

In the presence of a dc magnetic field B0 directed along the optical axis of the crystal (parallel
to the z-axis), the Hamiltonian of a bare electron is written in the Coulomb gauge as

He = h̄ωc(A+ A + 1/2) +
p2

z

2m‖
+ V (z), (1)

where the harmonic oscillator operators A and A+ (later there will also be B and B+) are
introduced [10, 14, 15] to describe the transverse part of the electron Hamiltonian and the
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unperturbed electron state. In equation (1), ωc = eB0/m⊥ is the cyclotron frequency of the
bare electron for the magnetic field parallel to the optical axis, m⊥ and m‖ being the diagonal
components of the bare electron effective mass-tensor. V (z) and pz are the confining potential
and the component of the electron momentum along the optical axis, respectively. Considering
the interaction of a conduction electron with the optical phonons, the Hamiltonian of the system
becomes

H = He +
∑

�q,µ

(
Vµ(�q)√

V
b�q,µei�q·�r + H.c.

)
+

∑

�q,µ

h̄ωµ(�q)b+
�q,µb�q,µ, (2)

where b+
�q,µ

and b�q,µ are, respectively, creation and annihilation operators for a phonon with
wavevector �q , branch index µ, and frequency ωµ(�q); V is the volume of the system. The form
of the coupling constants Vµ(�q) has been previously obtained by Toyozawa [16] and used in [8]
to discuss the properties of the anisotropic uniaxial polaron.

Denoting by ϕl = 〈z|l〉 and El the wavefunction describing the motion of the bare electron
in the confining potential V (z) and, respectively, its corresponding energy, the second-order
energy correction of the unperturbed state, |�i〉 = |n, m, l〉⊗|0〉ph = |n〉A ⊗|m〉B ⊗|l〉⊗|0〉ph,
has the form

�En,l = − 1

V

∑

�q,µ

|Vµ(�q)|2
∑

n′,m′,l′

|〈n, m, l|ei�q·�r |n′, m ′, l ′〉|2
h̄ωc(n′ − n) − �n,l + El′ − El + h̄ωµ(�q)

. (3)

Here |n〉A and |m〉B are the oscillator states (n!)−1/2(A+)n|0〉A and (m!)−1/2(B+)m|0〉B , with
|0〉A and |0〉B the vacuum states of the operators A and B , |0〉ph being the phonon vacuum
state.

In the context of the IWBPT �n,l = �En,l − �ERSPT
0,l0

, where the upper index RSPT
means that the corresponding quantity is calculated in the frame of the Rayleigh–Schrödinger
perturbation theory, l0 being the quantum number of the fundamental state describing the z-
motion of the electron. Generally, for �ERSPT

n,l , a form similar to (3) but with �n,l = 0 is
used.

Working at zero temperature and considering that the energies of the excited states for
z-motion are large relative to the in-plane (x, y) energies, we shall restrict ourselves to the
contribution of the fundamental state |l0〉. In this limit, the expression (3) of the energy
correction becomes

�En,l0 = − 1

V

∑

�q,µ

|Vµ(�q)|2
∑

n′,m′

|〈n, m|ei�q⊥· �ρ |n′, m ′〉|2|〈l0|eiqz z|l0〉|2
h̄ωc(n′ − n) − �n,l0 + h̄ωµ(�q)

, (4)

�ρ and �q⊥ having x- and y-components only. This formula would be directly obtained if a
form of an appropriate effective Hamiltonian [17] is used from the beginning. In the context
of such an approximation the results are improved by considering ϕl0 (z) as a variational
wavefunction [5, 17].

The finite z-extent of the electron wavefunction in the symmetrical planar layer is taken
into account here by using two forms for the trial wavefunction ϕl0(z): one which verifies

|ϕ(1)
l0

(z)|2 = (2a)−1e−|z|/a, (5)

(also considered in [5]) and the other being of Gaussian type,

ϕ
(2)
l0

(z) = (
√

πa)−1/2e−z2/(2a2). (6)

Based on the assumption that the behaviour of the function in the vicinity of the point
z = 0 plays an unimportant role in the fitting process of the experimental results, the first form
of the wavefunction, though not differentiable at z = 0, has been previously [5] used. We used
two such different forms in order to observe how sensitive the final results are to the particular
shape of the chosen wavefunctions.
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3. Lower magneto-polaron branch

This magneto-polaron branch is constituted by the Landau levels situated, due to the magneto-
polaron splitting, below the optical-phonon continuum. We consider here the entire optical
phonon spectrum (including the quasi-transverse modes). In this case all the denominators
of equation (4) are positive, so the summation over the intermediate states |n′, m ′〉 can be
performed [12] paying the price of introducing a supplemental τ -integral:

�En,l0, j = −
∑

�q,µ

|Vµ(�q)|2
h̄V

f j (qz)

∫ ∞

0
dτ e−[ωµ(�q)−�

(low)
n,l0 , j /h̄]τ 〈n, m|ei�q⊥· �ρ(τ)e−i�q⊥· �ρ(0)|n, m〉, (7)

where

�ρ(τ) = eHeτ/h̄ �ρe−Heτ/h̄ (8)

and

f j (qz) =
∣∣∣∣
∫ +∞

−∞
dz ϕ

( j)∗
l0

(z)eiqz zϕ
( j)
l0

(z)

∣∣∣∣
2

. (9)

In terms of A and B operators the exponential ei�q⊥· �ρ can be put into the form [15]

ei�q⊥· �ρ = L+
�q M+

�q , (10)

where

L �q = exp

{(
h̄

2m⊥ωc

)1/2

(q+ A − q− A+)

}
, (11)

M�q = exp

{
−i

(
h̄

2m⊥ωc

)1/2

(q+ B+ + q−B)

}
, (12)

and

q± = qx ± iqy . (13)

The operators B and B+ used here differ from those of [15] by a phase factor, with no
consequence of subsequent developments. Because the operators B and B+ are not presented
in the Hamiltonian He, the expression of the density–density correlation function appearing
in (7) is independent of the quantum number m [12]:

〈n|L+
�q(τ )L �q(0)|n〉 = exp

[
− h̄q2

⊥
2m⊥ωc

(1 − e−ωcτ )

] n∑

p=0

C(n, p)

p!

[
2h̄q2

⊥
m⊥ωc

sinh2

(
ωcτ

2

)]p

, (14)

with C(n, p) being the combinations.
Thus, the expression (7) of the energy correction of the n-Landau level belonging to the

lower magneto-polaron branch becomes

�E (low)
n,l0, j/h̄ = − 2

π
√

ωc

∑

µ

∫ π/2

0
dθ ω3/2

µ (θ)α2D
µ (θ)

n∑

p=0

C(n, p)
22p

p!

∫ ∞

0

dt√
1 − e−t

× exp

[
−ωµ(θ) − �

(low)
n,l0, j/h̄

ωc
t

][
sinh2(t/2)

1 − e−t

]p

J ( j)
p (θ, t), (15)

where by J ( j)
p we have denoted the integral over q determined by f j (qz),

J ( j)
p (θ, t) = J ( j)

p (β) =
∫ ∞

0
dx f j (β, x)x2pe−x2

. (16)
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For the two considered trial wavefunctions, the f j (β) have the form

f1(β, x) = β4(β2 + x2)−2, (17)

f2(β, x) = exp

(
− x2

2β2

)
, (18)

with

β2 = h̄

2m⊥ωca2
(1 − e−t) tan2 θ. (19)

For the two selected cases, the integral over x can be exactly performed, obtaining

J (1)
p (β) = �(p + 1/2)

2
β p+3/2eβ2

W−p/2−3/4,p/2−3/4(β
2), (20)

J (2)
p (β) = �(p + 1/2)

2

β2p+1

(β2 + 1/2)p+1/2
, (21)

�(z) and Wµ,ν(z) being the gamma and Whittaker function, respectively. In equation (15),
instead of the 3D-polaronic coupling function αµ(θ) we used the corresponding 2D form,
previously introduced in [10],

α2D
µ (θ) = sin θ lim

m‖→∞ αµ(θ) = m1/2
⊥ q2|Vµ(�q)|2

π h̄[2h̄ωµ(θ)]3/2
. (22)

It is worth noting that in the limit of a 2D electron gas (a → 0), both considered functions
f j (β, x) reach unity. Then, performing the integration over x and t variables, equation (15)
reduces to equation (23) of [10]. However, the approximation considered before by which
only the state |l0〉 of the lowest energy was taken into account, disregarding the contributions
of all the states |l〉 having higher energies, prevents the achievement of the 3D result in the
limit a → ∞.

At zero temperature, the cyclotron resonance frequency of the lower magneto-polaron
branch, defined through the energy difference between E (low)

1,l0 , j and E0,l0, j , is obtained by using
the corresponding expressions for the energy shift:

h̄
(low)
j = h̄ωc + �E (low)

1,l0 , j − �E0,l0, j . (23)

In the above equation, �E0,l0 , j is the term with n = 0 of equation (15).

4. Upper magneto-polaron branch

The upper magneto-polaron branch contains all magneto-polaron levels En.l0 situated in
the plane (E, B0) above the curve E0,l0 + h̄ω⊥

LO; ω⊥
LO is the maximum frequency of the

phonon spectrum. The energy correction of the n-Landau level of the upper magneto-
polaron branch is also given by equation (4). However, this time, the denominators Dn′,n =
ωc(n′−n)−�

(upp)

n,l0, j/h̄+ωµ(θ) are negative for n′ < n. Thus, in order to perform the summation
over the intermediate states by introducing a supplemental τ -integral, equation (4) has to be
arranged accordingly to the form proposed by Larsen in [15]:

�E (upp)

n,l0, j = − 1

h̄V

∑

�q,µ

|Vµ(�q)|2 f j (qz)

×
(

∑

n′,m′

|〈n, m|L+
�q M+

�q |n′, m ′〉|2
Dn′,n

−
∑

n′<n,m′

|〈n, m|L+
�q M+

�q |n′, m ′〉|2
Dn′,n

)

− 1

h̄V

∑

�q,µ

|Vµ(�q)|2 f j (qz)
∑

n′<n,m′

|〈n, m|L+
�q M+

�q |n′, m ′〉|2
Dn′,n

. (24)
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Then, the expression entering the curly brackets, denoted by T , can be written as

T =
∑

n′,m′

∫ ∞

0
dτ e−Dn′,nτ |〈n, m|L+

�q M+
�q |n′, m ′〉|2

−
∑

n′<n,m′

∫ ∞

0
dτ e−Dn′,nτ |〈n, m|L+

�q M+
�q |n′, m ′〉|2. (25)

Of course, the τ -integrals of the terms with n′ < n are divergent at the upper limit, but their
total contribution at T is zero. Then, using the completeness of the states |n′〉 ⊗ |m ′〉, the
form (25) becomes

T =
∫ ∞

0
dτ exp

[−(ωµ(�q) − �
(upp)

n,l0, j/h̄)τ
]
{

〈n|L+
�q(τ )L+

�q(0)|n〉 −
∑

n′<n

e(n−n′)ωc |〈n|L+
�q |n′〉|2

}
,

(26)

where the square of the matrix element has the form [18]

|〈n|L+
�q |n′〉|2 = n′!

n!

(
h̄q2

⊥
2m⊥ωc

)n−n′[
Ln−n′

n′

(
h̄q2

⊥
2m⊥ωc

)]2

exp

[
− h̄q2

⊥
2m⊥ωc

]
. (27)

Ln−n′
n′ (z) are the associated Laguerre polynomials defined by the equation [19]

Ln−n′
n′ (z) =

n′∑

j=0

(−1) jC(n, n′ − j)

j !
z j . (28)

The final expression of the energy correction to the n-Landau level of the upper magneto-
polaron branch can be put into the form

�E (upp)

n,l0, j/h̄ = − 2

π
√

ωc

∑

µ

∫ π/2

0
dθ α2D

µ (θ)ω3/2
µ (θ)

∫ ∞

0
dt exp

[
−ωµ(θ) − �

(upp)

n,l0, j/h̄

ωc
t

]

×
{ n∑

p=0

C(n, p)
22p

p!

1√
1 − e−t

[
sinh2(t/2)

1 − e−t

]p

J ( j)
p (θ, t)

−
∑

n′<n

e−(n′−n)t n′!
n!

J ( j)
n,n′(β

∞)

}
− 2

√
ωc

π

∑

µ

∫ π/2

0
dθ α2D

µ (θ)ω3/2
µ (θ)

×
∑

n′<n

n′!
n!

J ( j)
n,n′(β∞)

ωc(n′ − n) − �
(upp)

n,l0, j/h̄ + ωµ(θ)
, (29)

where we have denoted

J ( j)
n,n′(β

∞) =
∫ ∞

0
dx f j (β

∞, x)e−x2
(x2)n−n′

[Ln−n′
n′ (x2)], (30)

with β∞ being the value of β for t → ∞.
Taking into account equation (28) of the associated Laguerre polynomials, the integral (30)

can be performed and the result is a linear combination of integrals (20) and (21) written for
t → ∞, for any of the two considered functions f j . For the sake of simplicity we shall not
present these expressions here.

The cyclotron resonance frequency for the upper magneto-polaron branch is given by


(upp)

j = ωc + �E (upp)

1,l0, j/h̄ − �E0,l0, j/h̄. (31)

For the particular case of an isotropic 2D magneto-polaron (a → 0) and considering the RSPT
context (�

(upp)

0,l0 , j = 0), equation (31) reduces to equation (14) of [14].
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Figure 1. The angular dependence of the ‘true’ optical-phonon modes ωµ(µ = 1, 2) in layer
compound InSe.

5. Intermediate magneto-polaron branch

The appearance of this branch of the magneto-polaron energy spectrum,never stated before, is a
consequence of the properties of the optical phonon spectrum, directly related to the involved
anisotropy. Thus, for InSe, a material which presents only two branches of extraordinary
phonon spectrum (µ = 1, 2), the intermediate magneto-polaron branch has the character of a
lower branch for the quasi-longitudinal phonon modes (µ = 2) and, at the same time, that of
an upper branch for the quasi-transverse phonon modes (µ = 1).

Denoting the expressions (29) and (15) written for µ = 1 and 2 by �E (upp)

n,l0, j (µ = 1) and

�E (low)

n,l0, j (µ = 2), respectively, the expression of the energy shift of the n-Landau level of the
intermediate magneto-polaron branch can be formally put into the form

�E (int)
n,l0, j = �E (upp)

n,l0, j(µ = 1) + �E (low)
n,l0, j (µ = 2), (32)

with a unique quantity �
(int)
n,l0, j entering in both terms of the right member of the above equation.

The presence of such an intermediate magneto-polaron branch introduces into the
cyclotron resonance spectrum a new frequency:


(int)
l0, j = ωc + �E (int)

1,l0, j/h̄ − �E0,l0, j/h̄. (33)

A direct generalization to the case of a uniaxial crystal having many extraordinary
phonon branches leads to the appearance of other supplemental intermediate magneto-polaron
branches.

6. Results and discussion

In figure 1 we show the angular dependence of the optical phonon mode frequencies belonging
to the quasi-transverse branch for µ = 1 and quasi-longitudinal branch for µ = 2, respectively.
To allow a better interpretation of the experimental results, the nonparabolicity of the electron
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Figure 2. The angular dependence of the polaronic coupling functions αµ (quasi-transverse branch
µ = 1 (right axis), and quasi-longitudinal branch µ = 2 (left axis)) for InSe in 2D and 3D cases
(m⊥ = 0.127 m0; m‖ = 0.081 m0); the symbol 〈 〉 means angular average.

energy band (without polaron effect) which is almost a linear function of the magnetic field
strength [20] is considered. Thus, according to [5], a small additional mass increase of
0.14% T−1 was taken into account in the following. This effect leads to a small dependence
on the magnetic field strength of the polaronic coupling functions α2D

µ (θ). In figure 2, the two
functions α2D

µ (θ) for the 2D case and α3D
µ (θ) for the 3D case (µ = 1, 2) are presented in the

absence of a magnetic field. The difference in the angular dependence of 2D and 3D polaronic
coupling functions is given by equation (39).

To compare the results of our calculation to the experimental measurements [5] we used
only two fitting parameters, m⊥ and a. The phonon spectrum and the electron-optical phonon
coupling functions are entirely determined from the experiment [7, 21]. As is well known,
the effective mass of the bare electron (the effective mass tensor for the anisotropic case)
is determined by fitting the dependence on the magnetic field of the cyclotron resonance
frequency, especially (for technical reasons) in the domain of weak magnetic fields. This
fitting procedure has a self-consistent character because the polaronic constants α2D (the
polaronic functions α2D

µ (θ) for the uniaxial case) depend on m⊥. In [5], the value 0.131 m0

for m⊥, determined before [3], was considered from the beginning. Also, considering very
schematically the phonon spectrum and the electron–phonon interaction, in analysing the
experimental results, all the quantities ωLO, α⊥, α‖, and a [5] seem to play a fitting-parameter
character. Here, benefiting from the experimental results concerning the behaviour of the
cyclotron frequency in a large domain of magnetic fields we considered m⊥ as a fitting
parameter.

In figure 3 we show the first Landau levels (n = 0, 1, 2) of the magneto-polaron spectrum
obtained for the parameters m⊥ = 0.127 m0 and a = 37.5 Å, with the first electron
wavefunction ϕ

(1)
l0

(z), parameters which assure the best fit of the cyclotron resonance spectrum
(see figure 5). As a direct consequence of the optical-phonon spectrum of this uniaxial crystal a
supplemental branch of the magneto-polaron spectrum, called the intermediate branch, appears.
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Figure 3. The first Landau levels (n = 0, 1, and 2) of the magneto-polaron spectrum (thick solid
lines) for InSe in the Q2D case with the first trial electron wavefunction, ϕ

(1)
l0

(a = 37.5 Å).

Figure 4. The first Landau levels (n = 0, 1, and 2) of the magneto-polaron spectrum (thick solid
lines) for InSe in Q2D case with the second trial electron wavefunction, ϕ

(2)
l0

(a = 75 Å).

Though it is situated at unexplored high magnetic fields, this new intermediate magneto-polaron
branch follows naturally from the involved anisotropy of a system with a complex phonon
spectrum. The value of the parameter a is very close to the value (a = 36 Å) obtained in [5].

In figure 4 are shown the same results as before, but now using the second form of the
electron wavefunction and the parameters m⊥ = 0.127 m0 and a = 75 Å.

In figure 5 the experimental data [5] (solid dots on graph) are fitted with the corresponding
expressions of the cyclotron resonance frequencies belonging to the different branches, for the
first electron wavefunction (the solid lines) and for the second electron wavefunction (the dotted
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Figure 5. Cyclotron resonance frequencies versus the magnetic field for InSe considering a 3D
(dash–dot line), 2D (dashed line), and Q2D behaviour (solid line—ϕ

(1)
l0

; dotted line—ϕ
(2)
l0

). Besides
the lower and the upper branches, a new intermediate magneto-polaron branch is calculated at higher
magnetic fields.

lines). Though the two values of the parameter a which realize the best fit are substantially
different for the two considered electron wavefunctions, the width of the Q2D electron layer
defined as w = 〈(z − 〈z〉)2〉1/2 has, approximately, the same value in both cases, 52 Å.
Therefore, the results seem to depend merely on the width of the Q2D electron gas and not on
the particular form of the variational wavefunction.

As follows from the magneto-polaron spectrum calculations, we believe that for large
magnetic fields there is a supplemental branch of cyclotron resonance frequencies in the spectral
domain [ω‖

TO, ω
‖
LO].

Now, returning to the magneto-polaron energy spectrum figures 3 and 4, we remark that
the Landau levels of the lower branch, for B0 → 0, reach a value that, instead of being between
the 3D polaron self-energy ES (−6.47 meV) and its corresponding 2D-value (−8.93 meV),
is higher than the 3D polaron self-energy. This is a direct consequence of the fact that,
not knowing the confining potential, we have to restrict ourselves to the contribution of the
fundamental state |l0〉. However, choosing the second form of the electron wavefunction to be
of Gaussian type (which means a potential for a harmonic oscillator) we have the possibility
to evaluate exactly the contribution to the energy correction of all the intermediate states
(at least for the lower magneto-polaron branch).

In this case, equation (7) becomes

�En,l0 = −
∑

�q,µ

|Vµ(�q)|2
h̄V

∫ ∞

0
dτ e−[ωµ(�q)−�

(low)
n,l0

/h̄]τ 〈n, m, l0|ei�q·�r(τ )e−i�q·�r(0)|n, m, l0〉, (34)

where �r and �q have also z-component.
Now, the density–density correlation function factorizes:

〈n, m, l0|ei�q·�r(τ )e−i�q·�r(0)|n, m, l0〉 = 〈l0|eiqz z(τ )e−iqz z(0)|l0〉〈n, m|ei �q⊥ · �ρ(τ)e−i �q⊥· �ρ(0)|n, m〉, (35)

the last factor being calculated before. The first factor of equation (35) can be directly
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calculated, obtaining

〈
l0|eiqz z(τ )e−iqz z(0)|l0

〉 = exp

[
−q2

z a2

2

(
1 − exp

(
− h̄τ

m‖a2

))]
. (36)

Taking into account equations (14) and (36), and performing the integrals over the azimuthal
angle and the modulus of the phonon wavevector, the expression (34) of the energy correction
becomes

�En,l0/h̄ = − 1√
πωc

∑

µ

∫ π/2

0
dθ sin θω3/2

µ (θ)α2D
µ (θ)

∫ ∞

0
dt exp

[
−ωµ(θ) − �n,l0 /h̄

ωc
t

]

×
n∑

p=0

C(n, p)
(2 p − 1)!!

p!

[
2 sin2 θ

Za(t, θ)
sinh2(t/2)

]p
1√

Za(t, θ)
, (37)

where

Za(t, θ) = m⊥ωca2

h̄

(
1 − exp

(
− h̄t

m‖a2ωc

))
cos2 θ + (1 − e−t) sin2 θ. (38)

Now, taking the limit a → ∞ and considering the relationship between the polaronic coupling
functions αµ(θ) for the case 2D and 3D,

α2D
µ (θ) = m1/2

⊥

(
cos2 θ

m‖
+

sin2 θ

m⊥

)1/2

α3D
µ (θ), (39)

equation (37) reduces to the expression of the energy correction (16) of [10], obtained in the
3D case, but written for pz = 0; pz is the eigenvalue of the free-electron momentum along the
z-axis. Of course, the limit a → 0 leads to the 2D case.

In figure 6 the first two Landau levels of the lower magneto-polaron branch are shown for
the following considered cases: 3D (solid line), 2D (dash–dot line), Gaussian Q2D (a = 75 Å)
without summation over the intermediate states (dashed line), and Gaussian Q2D (a = 75 Å)
with summation over all the intermediate states (dotted line). As can be seen, the curves
obtained by taking into account the contributions of all the intermediate states are between
the 2D and the corresponding 3D curves with an effect which assures the correctness of the
self-energy. We plotted in figure 7 the cyclotron resonance frequency corresponding to the
lower magneto-polaron branches shown in figure 6. Thus, we can observe that the effect of
the summation over all the intermediate states, as far as cyclotron resonance is concerned, is
of minor importance.

By systematically taking into account all the sources of the system’s anisotropy, we
presented here the effects of the anisotropy and the finite z-extent of the electron wavefunction
on the magneto-polaron spectrum in a geometry with magnetic field directed along the optical
axis. In particular the anisotropic properties of the extraordinary-phonon spectrum are found
to be very important, imposing new features on the distribution of the cyclotron resonance
frequencies as follows:

(i) the presence of quasi-transverse phonons assures, from below, the pinning of the lower
cyclotron resonance frequency branch to the lowest phonon frequency ω⊥

TO (in this
particular case of InSe) at very large magnetic field;

(ii) the cyclotron resonance frequency of the upper magneto-polaron branch is situated above
the highest phonon frequency ω⊥

LO independently of the strength of the electron–phonon-
interaction;
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Figure 6. The first two Landau levels for the Q2D InSe magneto-polaron energy spectrum
calculated using the second trial electron wavefunction (Gauss function) with (dotted line) and
without (dashed line) summation over the intermediate states. The 3D (solid line) and 2D (dash–
dot line) cases are also shown.

Figure 7. The lower cyclotron resonance frequency branch for Q2D InSe calculated using the
second trial electron wavefunction (Gauss function) with (dotted line) and without (solid line)
summation over the intermediate states. For comparison, the 3D (dash–dot line) and 2D (dashed
line) results are shown.

(iii) there is a new branch of the cyclotron resonance frequency situated in the phonon frequency
domain (ω

‖
TO, ω

‖
LO).

A generalization to the case of a material having a richer infrared reflectivity/absorption
spectrum is possible.



Complex magneto-polaron spectrum of the layer compound InSe 3253

References

[1] Portal J C, Nicholas R J, Kress-Rogers E, Chevy A, Besson J, Galibert J and Perrier P 1980 J. Phys. Soc. Japan
A 49 (Suppl.) 879

[2] Nicholas R J, Kress-Rogers E, Portal J C, Galibert J and Chevy A 1982 Surf. Sci. 113 339
[3] Kress-Rogers E, Nicholas R J, Portal J C and Chevy A 1982 Solid State Commun. 44 379
[4] Howell D F, Nicholas R J, Langerak C J G M, Singleton J, Janssen T J B M and Chevy A 1989 J. Phys.: Condens.

Matter 1 7493
[5] Nicholas R J, Watts M, Howell D F, Peeters F M, Wu G G, Devreese J T, van Bockstal L, Herlach F, Langerak C

J G M, Singleton J and Chevy A 1992 Phys. Rev. B 45 12144
[6] Loudon R 1964 Adv. Phys. 13 423
[7] Kuroda N and Nishina Y 1979 Solid State Commun. 30 95
[8] Brancus D E N and Mocuta A C 1995 Can. J. Phys. 73 126
[9] Lee B C, Kim K W, Dutta M and Stroscio M 1997 Phys. Rev. B 56 997

[10] Brancus D E N and Stan G 2001 Phys. Rev. B 63 235203
[11] Lindemann G, Lassnig R, Weidenbusch G and Gornik E 1983 Phys. Rev. B 28 4693
[12] Peeters F M and Devreese J T 1983 Phys. Rev. B 28 6051
[13] Brancus D E N and Stan G 1998 Phys. Rev. B 57 3411
[14] Feldman A and Kahn A H 1970 Phys. Rev. B 1 4584
[15] Larsen D M 1986 Phys. Rev. B 33 799
[16] Toyozawa Y 1972 Polarons in Ionic Crystals and Polar Semiconductors (Amsterdam: North-Holland) p 237
[17] Xiaoguang W, Peeters F M and Devreese J T 1986 Phys. Rev. B 34 8800
[18] Das Sarma S 1984 Phys. Rev. Lett. 52 859
[19] Abramowitz M and Stegun I A Handbook of Mathematical Functions with Formulas, Graphs and Tables (Applied

Mathematics Series vol 55) (Washington, DC: National Bureau of Standards) p 775
[20] Horst M, Merkt U, Zawadzky W, Maan J C and Ploog K 1985 Solid State Commun. 53 403
[21] Carlone C, Jandl S and Shanks H R 1981 Phys. Status Solidi b 103 123


	1. Introduction
	2. Hamiltonian and perturbational calculation
	3. Lower magneto-polaron branch
	4. Upper magneto-polaron branch
	5. Intermediate magneto-polaron branch
	6. Results and discussion
	References

